Epi-convergent Smoothing with Applications to Convex Composite Functions
نویسندگان
چکیده
Smoothing methods have become part of the standard tool set for the study and solution of nondifferentiable and constrained optimization problems as well as a range of other variational and equilibrium problems. In this note we synthesize and extend recent results due to Beck and Teboulle on infimal convolution smoothing for convex functions with those of X. Chen on gradient consistency for nonconvex functions. We use epi-convergence techniques to define a notion of epi-smoothing that allows us to tap into the rich variational structure of the subdifferential calculus for nonsmooth, nonconvex, and nonfinite-valued functions. As an illustration of the versatility and range of epi-smoothing techniques, the results are applied to the general constrained optimization for which nonlinear programming is a special case.
منابع مشابه
Smooth Convex Approximation to the Maximum Eigenvalue Function
In this paper, we consider smooth convex approximations to the maximum eigenvalue function. To make it applicable to a wide class of applications, the study is conducted on the composite function of the maximum eigenvalue function and a linear operator mapping m to n, the space of n-by-n symmetric matrices. The composite function in turn is the natural objective function of minimizing the maxim...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملAn Extension of Attouch's Theorem and Its Application to Second-order Epi-differentiation of Convexly Composite Functions
In 1977, Hedy Attouch established that a sequence of (closed proper) convex functions epi-converges to a convex function if and only if the graphs of the subdifferentials converge (in the Mosco sense) to the subdifferential of the limiting function and (roughly speaking) there is a condition that fixes the constant of integration. We show that the theorem is valid if instead one considers funct...
متن کاملBernstein's polynomials for convex functions and related results
In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of Hermite-Hadamard inequality for convex functions.
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 23 شماره
صفحات -
تاریخ انتشار 2013